Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The wind shear stress at the ocean surface drives momentum exchange across the air-sea interface regulating atmospheric and oceanic phenomena. Theoretically, the mean wind stress acts in a reference frame moving with the ocean surface; however, the relative motion between the air and ocean surface layers is conventionally neglected in bulk transfer formulae. Recent developments improving air-sea momentum flux quantification advocate for explicitly defining the air-sea relative wind, especially in the regime of low wind forcing, where surface currents may approach a significant fraction of the total wind speed. Yet, in practice, this new approach is typically applied using opportunistic definitions of the near-surface current. Here, we build on this recent work and propose a general framework for the bulk air-sea momentum flux that directly accounts for vertical current shear and surface waves in quantifying the stress at the interface. Our approach partitions the stress at the interface into viscous skin and (wave) form drag components, each applied to their relevant surface advections, which are quantified using the inertial motions within the sub-surface log layer and the modulation of waves by currents predicted by linear theory, respectively. The efficacy of this approach is demonstrated using an extensive oceanic dataset from the Coastal Endurance Array (Ocean Observatories Initiative) offshore of Newport, Oregon (2017–2023) that includes co-located measurements of direct covariance wind stress, directional wave spectra, and current profiles. As expected, our framework does not alter the overall dependence of momentum flux on mean wind forcing, and we found the largest impacts at relatively low wind speeds. Below 3 m s$$^{-1}$$, accounting for sub-surface shear reduced form drag variation by 40–50% as compared to a current-agnostic approach; as compared to a shear-free current, i.e., slab ocean, a 35% reduction in form drag variation was found. At this wind forcing, neglecting the currents led to systematically overestimating the form stress by 20 to 50%—an effect that could not be captured by using the slab ocean approach. This framework builds on the existing understanding of wind-wave-current interaction, yielding a novel formulation that explicitly accounts for the role of current shear and surface waves in air-sea momentum flux. This work holds significant implications for air-sea coupled modeling in general conditions.more » « less
-
Free, publicly-accessible full text available February 4, 2026
-
Sophisticated measurements of fluid velocity near to an undulating air–water boundary have traditionally been confined to the laboratory setting. Developments in camera technology and the opening of novel modes of analysis have allowed for sensitive measurements of the current profile in the ocean’s uppermost layer. Taking advantage of the Research Platform R/P FLIP as a ‘laboratory at sea’, here we present first-of-their-kind thermal and polarimetric camera-based observations of wave orbital velocities and mean shear flows in the upper centimetres of the ocean surface layer. Measurements reveal a well-defined logarithmic layer as seen in laboratory measurements and described by classical surface layer theory; however, substantial spread of observations is found at low levels of wind forcing, where the Stokes drift of swell may have a substantial impact on the near-surface current profile. A novel application of short time window Fourier transforms allows for the estimation of near-surface wave orbital velocity magnitudes. These are found to be in general agreement with the prescriptions of linear wave theory, although observations diverge from theory at high levels of wind forcing where the interface is subject to surface wave breaking. Finally, the surface gravity wave phase-coherent short wave growth is presented and discussed in the context of hydrodynamic wave and airflow modulation.more » « less
An official website of the United States government
